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Abstract 
The presence of fog, haze, or atmospheric particles reduces visibility which is an under-

constrained challenging classical problem due to ambiguous scene radiance and transmis-
sion. Consequently, digital images captured under such conditions suffer from poor recogni-
tion. In this work, a fast single image physics based inversion scattering model is adopted to 
overcome these limitations. Denoising convolutional neural networks (DnCNNs) model is 
well suited for blind Gaussian denoising in a learning framework at hidden layers. With the 
DnCNN blind denoised depth map, high-quality transmission is estimated and finally by in-
verting scattering image formation model, a clear image is obtained along with tuned hazi-
ness factor. The proposed algorithm performs well compared to sixteen state-of-the-art 
methods qualitatively and quantitatively on Ground Truth (GT) O-Haze dataset. Output im-
ages are appealing, halo free, edge preserved, colour balanced, clear.  

Keywords: Image recovery model, Quality Assessment, DnCNN, Residual Learning, 
Batch Normalization, Dehazing, extinction coefficient.  

 

1. Introduction 
Image with fine details is the key for image analysis, and extraction. Haze, fog, and sus-

pended particles in the atmosphere cause obstacles in image visibility due to the scattering of 
light in the media by those suspended particles [1, 2].Visibility is one of the research sought-
after topics during the last decade. Thousands of research papers are found to address the 
problem [3]. Several techniques have been proposed till now. As the problem is ill-posed and 
prediction-based, no single method can validate the problem. Dehazing, defogging, and de-
raining techniques are classified into three broad categories, (i) Image enhancement based, 
(ii) Image Fusion based, and (iii) Image Restoration based [3]. The image Enhancement 
method takes care of the contrast and visual effect of the image without taking care of image 
degradation. The image fusion-based method highlights the maximization of information 
from multiple sources of images. The image restoration-based method finds the optical-based 
physics model to invert the degraded image and compensate for the distortion by some statis-
tical prior. Among the three categories, image restoration methods address the dehaze prob-
lem precisely until now. The image formation optical model was first proposed by H. 
Koschmieder [10] and improved by MacCartney [11]. 

In [9] pioneering work of Oakley et al. for the first time proposed an image formation 
scattering model to fix the problem of visibility improvement. They have solved the inverse 
model with scattered and attenuated relative pixel flux estimation. Finally, this estimated at-
tenuated map was subtracted from the hazy image to produce a clear image. A temporal filter 
is presented to solve the problem.  

Tan [4] in 2008: The work of Oakley [9] improved contrast. Further in [4], the transfor-
mation of one gray image into a color image was performed under the two preceding condi-
tions, i. the contrast in the clear image should be higher than that of the hazed image, ii. At-
tenuation of field spots is a continuous function of distance and gradually becomes smooth.  

Fattal [5] in 2008: In [5], the novel prior estimation described no correlation between ob-
ject surface shading and the transmission map. Independent component analysis (ICA) and a 
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Markov random field (MRF) model applied to estimate the surface albedo. Thus, it quantified 
the medium transmission of the scene and recovered the clear image from the hazy image.  

J Kopf et. al. [29] in 2008: established an intrigued system of browsing, enhancing, and 
manipulating outdoor photographs in association with already existing GIS digital terrain 
and urban models. Thus, the generated image is of high quality, and clear, but requires ex-
pensive infrastructure and offline processing is used. 

He et al. 's [6]: Dark channel prior (DCP) is undoubtedly a milestone work of the dehaz-
ing problem. It triumphs over the drawbacks of the above-mentioned algorithms. A clear im-
age has a minimum intensity in a patch out of a colour channel. This principle is the soul of 
the model, which was then applied to atmospheric scattering models and developed marvel-
lous results. It combines with soft matting for master stroking the restoring image, which is 
responsible for high computational complexity. 

Tarel et al. 's [7]: developed a fast contrast-based enhancement to remove haze with line-
ar complexity. The atmospheric veil function was considered locally changeable slowly, thus 
the extinction coefficient of the medium was estimated. The transmission coefficient of the 
medium was estimated by pretreatment and median filtering. White balancing was applied to 
smooth the heterogeneous medium. 

Berman et al. 's [8]: It is non-local prior with nonuniform degradation. The proposed 
method introduced colours of the haze-free image to be clustered firmly and spread over the 
entire RGB image depending on their different transmission coefficients. Whereas a hazy im-
age forms a strong line of colours that was earlier clustered, called the haze line. It recovers 
distance maps and haze-free images reproduce from the haze line. The algorithm is linear, 
faster, deterministic, no training is required. 

K Zhang [30]: In [30] 2017 a novel idea was introduced with the DnCNN model that uti-
lized batch normalization and residual connection for blind Gaussian denoising. DnCNN is a 
Trainable Non-linear Reaction-Diffusion (TNRD) Model for fast and effective image restora-
tion. 

Y Chen [31] in 2015: TNRD – In [31] described TNRD (Trainable Nonlinear Reaction-
Diffusion) based image restoration with highly parameterized linear filter followed by highly 
parameterized influence functions through training of a loss-based approach. It is equally ap-
plicable for image Gaussian denoising, super-resolution, and deblocking. 

Kim et. Al. [35]: Contrast of hazy images enhanced by minimum information loss as cost 
function compensation. Static image and video are processed in real time. Flickering artifacts 
in video and ringing artifacts in still images are removed [35]. 

Kolar: Non-homogeneous illumination is corrected with optimization of parameters of B-
spline shading model to Shannon's entropy on Parzen windowing. Gradient-based optimiza-
tion algorithms efficiently use the derivatives of entropy. The work investigates extensively 
large retinal images to improve inhomogeneity in illumination [36]. 

PSAC (Photoshop Auto Contrast algorithm): is widely used in photoshop images for con-
trast improvement [37]. 

Tang studied in depth different haze-relevant features, especially DCP, in a learning 
framework to extract the best dehazing feature combination. The synthetic hazy dataset, as a 
training set, was found effective for dehazing real-world data [38]. 

Xiao [39]: Real-time single image retinex based color preservation method for defogging 
is presented. The method restores clear images from foggy images with real colour and a real-
time basis. 

Contribution: Efficient and effective results found in [12-15, 32]. Blind gaussian Denoiser 
(DnCNN) improves depth map quality effectively. Thus, refined transmission maps were ex-
tracted. Finally, good quality reconstruction was achieved through the linear optics model. 
Both DnCNN and optics models are linear. 

 



 
Fig. 1. Example of a) Sample hazy image (b) Dehazed image 

 
The rest of this paper is arranged as follows. The image formation model has been dis-

cussed with mathematical details and related works in section 2. In section 3, the experiment 
with qualitative and quantitative analysis is examined in detail. Section 4 provides a summary 
of the work and recommends future research directions and shortcomings.  

2. Proposed Approach with Related work  
In prior knowledge-based dehazing, original scene radiance is recovered through the deg-

radation model, and Physics-based optical scattering model shown respectively in figure 2 
and figure 3. 

 

 
Figure 2. a. Image Degradation Model (Left), b. Image Formation Optical Model 

 
𝑔(𝑥) = 𝑓(𝑥) ∗ ℎ(𝑥) + 𝑛(𝑥) (1) 

2.1 Physical based optical scattering model:  

This model relies on Mie scattering [10,11]. In [9] experimented with this model for the 
first time to improve image quality under poor visibility conditions. Since then, this problem 
has been a research hotspot. Image captured by the camera is divided into two parts, one is 
direct attenuation of light from the original scene to the camera or observer, and the other is a 
scattering of atmosphere light ending up at the camera. Thus, the final image at the observa-
tion point is blurry, low contrast, poor visibility, and noisy. This mechanism is expressed in 
figure 2b and represented by equation (2)  



𝐼(𝑥) = 𝐽(𝑥)𝑡(𝑥) + 𝐴(1 − 𝑡(𝑥)) (2) 

where I(x) is a degraded image, J(x) represents original scene radiance, t(x) is transmission 
map and A is Atmospheric light. Three variables, J(x), t(x), and A are unknown. Single image 
dehazing is an under-constrained problem. Efficient estimation of t(x) and A is the key to ef-
fective haze removal. Thus, optimum estimation of t(x), and A are the key to restore J(x). t(x) 
is estimated from depth estimation, multiple images, or from some prior with a single image. 
But estimation of the unknown parameters leads to the overall problem of the ill-posed in-
verse problem or constrain / intractable optimization problem. J(x)t(x) term is known as di-
rect attenuation as original scene radiance reduces exponentially with distance. A(1-t(x)) is 
called an atmospheric veil, airtight, atmospheric scattering light which causes shifts of colour, 
and degradation of the scene. 

2.2 DnCNN Architecture and noise estimation 

 

 
Figure 3 a. Flow Chart [DnCNN] (Left); b. DnCNN network Architecture [DnCNN] (Right) 

 
DnCNN is a feedforward very deep Convolution Neural Network for denoising under dis-

criminative learning of research hot spots. This architecture incorporates a learning algo-
rithm with regularisation. Residual learning and batch normalization are incorporated to 
speed up the training process towards denoising performance boost up. This model in figure 
4 removes s efficiently blind Gaussian noise. Thus, the model can perform cleaning the noise 
in the hidden layers. These features attract several applications like jpeg image artifact re-
moval, single image super-resolution, image deblocking, GPU computing [DnCNN]. Any deep 
CNN involves two steps:(i) network architecture design (hereby VGG) and (ii) model learning 
from training data (residual learning speed up and better-denoised performance with batch 
normalization) [30].  

a. Network Depth  
Convolution kernel of 3x3 size without any pooling layers. The receptive field of d depth 

is (2d+1) (2d+1). Increased size of the receptive field tends to grasp a larger image area so 
that trade-off between performance and efficiency is an important issue in designing DnCNN 
with proper depth d. Receptive field size relates to the patch size of the demonizing model 
used. Highly noised zones require larger patch sizes for effective reconstruction. DnCNN uses 
σ =25 as noise level, 

b. Network Architecture 
Input to DnCNN is noisy. y=x+v. According to discriminative learning like MLP (Multi-

layer Perceptrons), CSF (a cascade of shrinkage fields), mapping function 𝓕(y)=x estimates 
clean image. In the DnCNN model, 𝓡(y)≈v, residual mapping, is extracted from residual 
learning. Thus, x=y-𝓡(y). Now, the average mean square error between residual images and 
estimation from noisy input is  



𝑙(𝛩) =
1

2
∑

𝑁

𝑖=1

‖𝑅𝑦𝑖 , 𝛩 − (𝑦𝑖 − 𝑥𝑖)‖𝐹
2  (3) 

This is also considered as a loss function to learn the trainable parameter 𝛩. {(xi, yi)} Ni=1 

signifies N noisy-clean image pairs. Figure 3 shows a proposed model to learn residual images. 
Deep Architecture 
There are three types of architecture.: i. conv+ReLU, first layers 64 filters with 3x3xc size 

for 64 features maps along with ReLU unit (ReLU, max (0,.)) for nonlinearity, (c-number of 
image channels). ii. Conv+batch normalization_ReLU- Batch normalization is performed in-
between convolution and ReLU. 64 filters with 3x3x64 size are for 2~(d-1) depth hidden lay-
ers. iii. Convolution is for the last layers for reconstructed output. 

Removal of Boundary Artifacts 
To maintain the size of the output image as that of input, zero paddings are maintained 

before convolving. This way boundary artifacts are removed. 
c. Unification of Residual Learning and Batch Normalization for Image De-

noising:  
The model in figure 1 is equally efficient to produce x from 𝓕(y) or 𝓡(y) to predict noise v. 

The benefit of ReLU and Batch Normalization is used not only to speed up performance but 
also to estimate F(y) as close as clean image X with the estimation of residual image v. Resid-
ual learning is integrated with batch normalization to speed up and to cope up the perfor-
mance due to internal covariate shift during parameter training. Finally, Bath normalization 
boosts denoising performance the best.  

d. Association with TNRD  
The DnCNN model proposed is a one-stage TNRD (Trainable Nonlinear Reaction-

Diffusion) model. Initially, TNRD was developed to address the problem below 

𝛹𝑦 − 𝑥 + 𝜆 ∑

𝐾

𝑘=1

∑ 𝑝𝑘𝑓𝑘 ∗ 𝑥𝑝

𝑃

𝑝=1

 (4) 

It is defined as a huge set of noisy-clean image pairs, N -the number of image size, ℷ -the 
regularisation parameter. fk * x represents the convolution of image x with kth kernel fk. pk(..) 

indicates the tunable kth penalty function in the parameter TNRD model. In Gaussian de-

noising 𝜓𝑍 =
1

2
‖𝑍‖2. The first stage diffusion iteration is represented as one gradient descent 

inference step starting at point y  

𝑋1 = 𝑦 − 𝛼𝜆 ∑

𝐾

𝑘=1

𝑓𝑘
¯ ∗ 𝜙𝑘𝑓𝑘 ∗ 𝑦 − 𝛼

𝛿𝜓𝑧

𝛿𝑧
|𝑧=0  (5) 

𝑓𝑘
¯ is obtained by 1800 phase shift of filter fk , also known as adjoint of filter fk. α is the 

step size. ρ' (.)=ϕk(.) and 
𝛿𝜓𝑧

𝛿𝑧
|𝑧=0 . Thus, equation 3 turns to the equation  

𝑉1 = 𝑌 − 𝑋1 = 𝛼𝜆 ∑

𝐾

𝑘=1

𝑓𝑘
¯ ∗ 𝜙𝑘𝑓𝑘 ∗ 𝑦 (6) 

v1 is the estimated residual of x w.r.t y. The effect of influence function ϕk (.) is considered 
as pointwise nonlinearity applied on convolutional feature maps. Equation 4 represents 2-
layers feed-forward CNN. DnCNN of figure 3 is regarded as generalized TNRD with i. Re-
placement of the influence function with ReLU simplifies CNN training, ii. The capacity of 
image modeling increases as the depth of CNN increases, iii. Batch normalization boosts CNN 
performance. Most of the DnCNN parameters represent image priors. Though the DnCNN 
model is basically for Gaussian noise, equally applicable for any type of noise. v1 can be ob-
tained from equation (3) if 

𝛿𝜓(𝑧)

𝛿𝑧
|𝑧=0 = 0 (7) 

 



Equation (5) is applicable for any kind of noise. Thus, the DnCNN model is used efficient-
ly to remove SSIR, JPEG artifacts and to clean hidden layers.  

e. Tending to General Image Denoising: 
The Gaussian denoising model is best suitable for a fixed noise level. Thus, before clean-

ing, the noise level is estimated and scaled down to a particular level and then applied to the 
model for efficient results. Training images are with AWGN from a wide range of noise levels, 
down-sampled images with multiple upscaling factors, and JPEG images with different quali-
ty factors. This method is performed excellently not only on blind gaussian image denoising 
but also on image deblocking, SISR (Single Image Super-Resolution), and blind image de-
noising. 

2.3 DnCNN network in the Proposed Model 
Refined transmission is achieved from turbid transmission via an approximate depth 

map (minimum intensity channel in the proposed model). The finer depth map is denoised 
with blind gaussian DnCNN in a learned framework through hidden layers. Equation (2) is 
the optical physics-based image degradation model [1,2]. I(x), J(x), t(x), A, and d are degrad-
ed images, original image, transmission, atmospheric light, and distance respectively. β is the 
extinction coefficient of the atmosphere and is represented as  

𝑡 = 𝑒−𝛽𝑑 (8) 
J(x)t(x) term is responsible for direct attenuation and the A(1-t(x)) term represents air-

light. These two terms are the reason behind the hazy model. Direct attenuation deteriorates 
the brightness of pixels as it traces away from the source. Whereas airtight term causes the 
pixel intensity white or grey as transmission decreases. It is clear from equation (2) that the 
airtight term is additive. Therefore, as transmission decreases, brightness increases while 
colour fades or saturates less. During the transmission from the original scene point to the 
acquisition point, each pixel gets corrupted with additive as well as multiplicative noise. This 
noise shifts colour, contrast, brightness, and sharpness of the pixel, and makes the resulting 
image whitish and almost invisible. Mathematically, as d tends to infinity, t(x) tends to zero. 
Consequently, I(x) tends to A. This is the reason that far objects are whitish and gradually 
vanish [27]. Single image haze removal becomes difficult to solve. A minimum of three RGB -
channels is chosen as a depth map [12,13] and refinement is done using DnCNN on depth 
map to get noiseless output which will produce clear transmission estimation. This is shown 
in equations(9), (10) and (11). 

𝐼𝑐𝑚𝑖𝑛 = (𝐼𝑐(𝑥) ) (9) 
Ic and Icmin indicate each RGB or multi-channel of an image and at least three or more 

channels respectively. The minimum intensity channel Icmin can now be considered as a raw 
depth map to recover haze-free image and easily be made noise-free or smoothened with the 
DnCNN technique shown by equation (9). 

𝐼𝑐𝑚𝑖𝑛𝐷𝑛𝐶𝑁𝑁 = 𝐷𝑛𝐶𝑁𝑁𝐼𝑐𝑚𝑖𝑛 (10) 
Equation (10) shows a noise-free minimum intensity channel or refined depth map. This 

channel is normalized. Compliment of this equation will produce a maximum intensity chan-
nel with DnCNN to reconstruct prominent image structure and reduced computational com-
plexity and easy to implement as transmission estimation t(x). With DnCNN, good quality 
haze-free images will be generated without compromising the important structure of the orig-
inal image. To generate a depth map by minimum patch estimation is more accurate, but 
computationally expensive [7]. The final refined transmission is represented by equation (11). 

𝑡𝑛𝑒𝑤𝑥 = 1 − 𝑘𝐼𝑐𝑚𝑖𝑛𝐷𝑛𝐶𝑁𝑁 (11) 
tnew,k are refined transmission and a proportionality constant for aerial perspective re-

spectively[33,34]. The value of k is between 0 to 1, clear visibility to no visibility. The concept 
of k, haziness factor, discussed in detail [7,12-15,32,43] and has been chosen dynamically for 
flexible, visually pleasing images. Atmospheric light is estimated as the average of the top 1% 
pixel intensity of each channel. Estimated transmission and atmospheric light help to revive 



original scene radiance J(x) from equation (2) and can be rewritten as in Eq. (12). This meth-
od is shown in figure 4. The process is shown pictorially in Figures 5, 6 in detail. 

𝐽𝑥 =
𝐼𝑥 − 𝐴

𝑚𝑎𝑥 (𝑡𝑥, 𝑡0)
+ 𝐴 (12) 

 

 
Fig 4 Block Diagram of SImDnCNNVI Model 

 

 
Figure 5. Analysis of the SImDnCNNVI model, Input, Depth map, transmission, output,  

improved depth map, improved transmission map, Improved output, a depth map of the final 
output, transmission map of the final output (L-R). 

 

 
Figure 6. Top L-Input, R-Depth map; Bottom L- Output, R-Depth map 

 



 
Figure7 L-R; Top Hue, middle-saturation, Bottom-Value: of Hazy Input; Top Hue,  

middle-saturation, Bottom-Value of Improved Output 
 
In figure 7, the hue, saturation, and value channel of input (left) and output(right) are 

shown. The saturation and value channel histogram of the output image is more distributed 
than its hazed version. That indicates the quality of the image gets improved while the hue 
channel is almost the same. Thus, colour attenuation is prevented, while colours are tending 
to saturate, and brightness increases with contrast. As a whole, direct attenuation terms are 
less affected after rectification while airtight term decreases. 

3. Experiments 
To verify the usefulness of the SImVIDnCNN model, we performed extensive experiments 

on both synthetic and natural hazy image datasets [Frida, He, O-Haze] and compared them 
with seven state-of-the-art methods. The experiment is run on Matlab18a with the SImVID-
nCNN model. For synthetic datasets, we evaluate our results quantitatively and qualitatively. 
For the natural hazy image dataset, we provide qualitative results to illustrate our superior 
performance in generating perceptually pleasing and haze-free images. 

3.1 Subjective Evaluation of Various Methods on  

Four images are selected from the Frida data set for comparison experiment. These imag-
es are natural and have large sky areas which create a halo effect and blocking artifacts at the 
time of dehazing. Figure 8 contains four hazy images and their depth map, transmission es-
timation, and haze-free images. Output images are halo effect-free, nature colour preserved, 
visibly clear. Figure 9 presents one sample image which is experimented for comparative 
analysis with five state-of-the-art methods. It is evident from the fig 9 that the proposed 
method gives more visibility and visually pleasing image. Especially, the sky region gives no 
reflection that is a very common problem of dehazing methods. Now, synthetic Frida Dataset 
has also experimented with four images. Figure 10 shows those four synthetic low visible im-
ages in the top row and SImDnCNNVI Dehazed output in the bottom row. This method is 
equally efficient in removing haze from synthetic hazy images like natural images. Trees, 
buildings are invisible in the synthetic hazy images, whereas its dehazed results are visibly 
clear. Ten images from the O-Haze dataset are experimented with proposed algorithm and 
compared to GT and seven benchmark algorithms. The results of proposed work are really 
satisfactory shown in table V.  

 



 
Figure 8 Four images a. Hazy, b. Depth Information, c. Transmission Estimation,  

and d. Dehazed Output 
 

 
Figure 9 y16_photo.png with different state-of-the-art techniques(Fattal, He, Kopf, Tan,  

Tarel) and proposed work 

3.2 Quantitative Assessment 

Subjective tests are biased [41]; quantitative assessments are before investigated for ex-
periments. PSNR, SSIM, Entropy, compression ratio are few criteria for effectiveness. In Ta-
ble- I, SSIM, PSNR, Entropy (hazy, and haze-free) performance experiment with the pro-
posed method and four images of figure 8. Experimental results show that the SImDnCNNVI 
model is efficient and effective. SSIM is appreciable with an average of 0.7232, PSNRs are al-
so high (average12.6150), the entropy of haze-free images is higher than hazy images. In fig-
ure 9, Objective Analysis one sample image with the state-of-the-artwork of Fatal, He, Kopf, 
Tan, Tarel, and the proposed work is compared. As reflected from table II, proposed ap-
proach outperforms in compression ratio, entropy parameters. Other parameter’s values are 
not bad. Therefore, the testing report finds good results. 

 
 
 
 
 



Table I Objective Assessment of proposed method with SSIM, PSNR, and Entropy of figure 8 

 
 

Table II Objective Analysis one sample image with the state-of-the-artwork of He, Tan, Tarel, 
Kopeaf, Fattal, and proposed work in figure 9 

 
 

 
Figure 10 Synthetic Image from Frida2 Dataset a. Hazy Image, b. Dehazed Image 

 

 
Figure11. More Visual Comparative Analysis 

 
Figure 11 shows an additional visual comparison of different techniques with proposed 

work. Figure 11 shows that in the proposed method, visibility is greater with small details. Its 
corresponding objective analysis in table III finds that proposed results are showing good 
performance over the others. But as the DnCNN is already trained in MATLAB 2018a, run-
ning of our program takes very little time whereas all other mentioned methods are offline 
with high computational complexity. As already explained, the DnCNN model deblocks arti-
facts and reduces blind noise, thus reconstructed output produces clear images through hid-
den layers.  

 
Table: III Objective evaluation of Figure 11 

 



3.3 More Dehazing with SImDnCNNVI 

Images with different degraded forms like underwater, rain, close objects, nighttime, etc 
were studied, and remarkable results were obtained. This is shown in figure 12 from the fri-
da2 dataset. Therefore, it can be concluded that the proposed approach is equally applicable 
for any kind of degraded images as well. 

 

 
Figure 12. Application on nine extreme degraded images of frida2 dataset a. an Input (Top 

Row), b. It's SImDnCNNVI Dehazing output (Bottom) 
 
Table V:  
O-Haze Dataset 10 images: 

 
 



In table V, ten images from the GT O-Haze dataset [42] with seven benchmark algorithms 
results have been presented and compared with ours. Surprisingly, our results visually out-
perform almost all others’ results. [42] is performing better than ours in some images.  

3.4 Run Time 

Run time is a factor that evaluates the effectiveness of an algorithm both in time and 
space. Moreover, the computational power with GPU plays a significant role in the effective-
ness of an algorithm. As we are performing our work on Processor INTEL Core i3,3110M 
CPU@2.40GHz, 64-bit operating system, with MATLAB2018a. Thus, our algorithm is effi-
cient and has low complexity compared to state-of-the-art techniques [He, Fattal, Meng, Ta-
rel]. The proposed method is linear in N=nxm(size of image), the number of pixels in the im-
age. Restoring the dehazed image from the transmission map is O(N). All the methods are 
implemented in MATLAB 2018a, and we evaluate them on the same machine. The average 
run time using two image resolutions shown in Table IV. In [24], it has been shown that 
state-of-the-art methods are taking a few seconds in an environment on the same machine 
(Intel CPU 3.40 GHz and 16GB memory and NVIDIA GeForce GTX 285 (1 GB) graphics 
card). Our method works very well compared to other state-of-the-works. 
Table IV Run Time 

 

4. Discussion, shortcoming, and future scope 
This paper addresses the classical constrained ill-posed inverse single image Dehazing 

problem, broadly visibility improvement that scales down single image visual quality and vis-
ibility which has immense applications. The efficient DnCNN model is a popular blind de-
noising feed-forward very deep learning architecture. The depth of the image is recovered 
through DnCNN blind denoising, cleaning hidden layers of transmission map without losing 
original image information. The added effect of DnCNN denoising is to remove blurring, 
blocking, and resolution problems. Atmospheric light is estimated through an average of 1% 
maximum intensity pixels of each channel. Adaptable haziness factor makes the algorithm 
effective and rich [32]. Our algorithm is linear. State-of-the-art dehazing techniques recover 
the haze-free image with either compromise of time and memory complexity or visual quality 
[4-7, 29]. Our approach is fast, has low computational complexity, and efficient with null hal-
low effect, no colour shifting, and improved visibility. Finally, this method is adaptable to a 
wide range of degraded images on the day, night, rainy, underwater conditions with natural 
and synthetic image datasets and compared to seven benchmark algorithms with GT O-Haze 
dataset and statistical parameters like PSNR, SSIM, Entropy, and compression ratio.  
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